姓名:程振民
职称:教授
所属单位:华东理工大学化工学院
电话:(021)64253529
传真:(021)64253528
电子邮件:zmcheng@ecust.edu.cn
教育背景:
2002/06-2003/05,澳大利亚昆士兰大学化学工程系,访问学者
2000/11-2001/02,法国国家科研中心化学工程科学实验室,访问学者
1990/09-1993/07,华东理工大学联合化学反应工程研究所,博士
1987/09-1990/07, 华东理工大学化学工程研究所,硕士
1983/09-1987/07, 华东理工大学化学工程系,学士
工作经历:
2002/03-至今,华东理工大学化工学院,聘任博士生导师
1999/11-至今,华东理工大学化工学院,教授,硕士生导师
1996/11-1999/10, 华东理工大学化工学院,副教授
1993/10-1996/10, 华东理工大学化工学院,讲师
研究方向:
反应器模拟与内构件设计;多相流模拟计算与基础理论;界面工程与过程强化;多孔介质模拟; 新型催化反应工程;电化学反应工程;二氧化碳转化与利用。
荣誉和奖励:
上海市化学化工学会庄长恭提名奖(2004)
教育部新世纪优秀人才支持计划(2004)
中国大学出版社图书奖第二届优秀教材二等奖(2012)
优秀研究生任课教师一等奖(2017)、优秀研究生教学成果二等奖(2019)
学术兼职:
华东理工大学学报、化学反应工程与工艺、管道技术与设备、Processes、Int. J. Eng. Sys. Model. Simul.杂志编委,全国催化加氢技术指导委员会委员,及多个学术会议和组织的学术委员。
承担科研项目:
1. 废弃秸秆制备能源化学品成套技术与装备,国家重点研发计划,2020-2022.
2. 非润湿型气-液-固三相接触方式的构建及应用研究,国家自然科学基金,2017-2020.
3. 萘磺化反应旋流闪蒸脱水设备研制,企业委托,2022-2023.
4. 2-萘酚连续反应技术研发及改造项目,企业委托,2021-2022.
5. 加氢反应器气液旋流混合内构件,企业委托,2021.
6. 超临界废水脱盐结晶过程研究,企业委托,2020-2022.
7. 基于沸腾床平台的相关技术研究,企业委托,2019-2021.
8. 大型炼油基地设计技术升级与提质增效技术开发应用,企业委托,2018-2020.
9. 单套2万吨/年甲基氯化铝连续生产工艺及其反应器的研制,企业委托,2018-2020.
10. 沸腾床加氢装置工程技术开发,企业委托,2018-2019.
代表性论著:
(一)研究生教材
1) 程振民, 朱开宏, 袁渭康. 高等反应工程. 化学工业出版社, 北京,2021.
2) 朱开宏, 程振民. 高等反应工程教程例题与习题(附MATLAB 算例). 华东理工大学出版社, 上海, 2012.
3)程振民, 朱开宏, 袁渭康. 高等反应工程教程. 华东理工大学出版社, 上海, 2010.
(二)近期所发表学术论文
1) Yan S, Mahyoub SA, Lin J, Zhang C, Hu Q, Zhong J, Cheng ZM*. Controllable growth of branched silver crystals over a rod of the same material as an efficient electrode in CO2 reduction at high current densities. Journal of Catalysis. 2022;405:224-35.
2) Yan S, Mahyoub SA, Lin J, Zhang C, Hu Q, Chen C, Cheng ZM* Au aerogel for selective CO2 electroreduction to CO: ultrafast preparation with high performance. Nanotechnology. 2022;33(12).
3) Xu C, Cheng ZM*. Dicationic Imizadolium-Based Tetrafluoroborate Ionic Liquids: Synthesis and Hydrothermal Stability Study. Chemistryselect. 2022;7(32).
4) Tang Y, Luo G, Zhong J, Chen K, Xu C, Cheng ZM*. Effects of stagnant zone on the effectiveness factor in a trickle bed. Chemical Engineering Science. 2022;248.
5) Tang Y, Luo G, Cheng ZM*. Packing size effects on the liquid circulation property in an external-loop packed bubble column. AIChE Journal. 2022.
6) Song Y, Li Z, Zhu Q, Huang Z, Cheng ZM*. Precipitation Behavior of Salts in Supercritical Water: Experiments and Molecular Dynamics Simulations. Processes. 2022;10(2).
7) Mahyoub SA, Qaraah FA, Yan S, Hezam A, Zhong J, Cheng ZM*. Rational design of low loading Pd-alloyed Ag nanocorals for high current density CO2-to-CO electroreduction at elevated pressure. Materials Today Energy. 2022;24.
8) Mahyoub SA, Qaraah FA, Yan S, Hezam A, Chen C, Zhong J, Cheng ZM*. 3D Cu/In nanocones by morphological and interface engineering design in achieving a high current density for electroreduction of CO2 to syngas under elevated pressure. Journal of CO2 Utilization. 2022;61.
9) Liu J, Shi J, Zhang B, Cheng ZM*. Novel Magnetically-Recoverable Solid Acid Catalysts with a Hydrophobic Layer in Protecting the Active Sites from Water Poisoning. Processes. 2022;10(9).
10)Lin J, Yan S, Zhang C, Hu Q, Cheng ZM*. Hydrophobic Electrode Design for CO2 Electroreduction in a Microchannel Reactor. Acs Applied Materials & Interfaces. 2022;14(6):8623-32.
11) Lin J, Yan S, Zhang C, Hu Q, Cheng ZM*. Electroreduction of CO2 toward High Current Density. Processes. 2022;10(5).
12) Cheng ZM*, Luo G, Tang Y, Ling D, Chen Z, Liu P. External Wetting Efficiency in a Three-Phase Fixed Bed Loaded with Porous and Non-Porous Packings. Processes. 2022;10(1).
13) Chen K, Cao Y, Zhu H, Ge H, Yang T, Zhou Z, Cheng ZM*. Experimental Determination on the Deactivation Kinetics of Residue Hydroprocessing in a Two-Stage Fixed Bed Loaded with HDM and HDS Catalysts. Processes. 2022;10(9).
14) Zhang C, Yan S, Lin J, Hu Q, Zhong J, Zhang B, Cheng ZM*. Electrochemical Reduction of CO2 to CO on Hydrophobic Zn Foam Rod in a Microchannel Electrochemical Reactor. Processes. 2021;9(9).
15) Yan S, Mahyoub SA, Zhong J, Chen C, Zhang F, Cheng ZM*. Ultrathin and dense Ag nanosheets synthesis under suppressed face (111) growth and surface diffusion. Journal of Power Sources. 2021;488
16) Yan S, Chen C, Zhang F, Mahyoub SA, Cheng ZM*. High-density Ag nanosheets for selective electrochemical CO2 reduction to CO. Nanotechnology. 2021;32(16).
17) Xu C, Cheng ZM*. Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development. Processes. 2021;9(2).
18) Tang Y, Luo G, Zhou Z, Li J, Gao G, Li L, Cheng ZM*. An analysis on catalyst wettability design in strong exothermic reactions. Chemical Engineering Science. 2021;246.
19) Shi J, Zhang L, Cheng ZM*. Design of Water-Tolerant Solid Acids: A Trade-Off Between Hydrophobicity and Acid Strength and their Catalytic Performance in Esterification. Catalysis Surveys from Asia. 2021;25(3):279-300.
20) Zhang F, Jin Z, Chen C, Tang Y, Mahyoub S, Yan S, Cheng ZM*. Electrochemical Conversion of CO2 to CO into a Microchannel Reactor System in the Case of Aqueous Electrolyte. Industrial & Engineering Chemistry Research. 2020;59(13):5664-74.
21) Zhang F, Chen C, Yan S, Zhong J, Zhang B, Cheng ZM*. Cu@Bi nanocone induced efficient reduction of CO2 to formate with high current density. Applied Catalysis a-General. 2020;598.
22) Zhang F, Chen C, Tang Y, Cheng ZM*. CO2 reduction in a microchannel electrochemical reactor with gas-liquid segmented flow. Chemical Engineering Journal. 2020;392.
23) Tang Y, Chen M, Cheng ZM*, Yang T, Chen B, Ge H, Fang X*. Effectiveness factors for a partially wetted catalyst based on the rivulet flow model. Chemical Engineering Science. 2020;215.
24) Mahyoub SA, Qaraah FA, Chen C, Zhang F, Yan S, Cheng ZM*. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO. Sustainable Energy & Fuels. 2020;4(1):50-67.