宋震
发布时间:2025-08-28   访问次数:21814   作者:

教授、博士生导师

职务:副院长

电子邮箱songz@ecust.edu.cn

地址:华东理工大学徐汇校区实验12510

个人简介

2025.01至今     华东理工大学,化工学院,副院长(分管研究生教育)

2023.01–至今     华东理工大学,化工学院,教授

2021.07–2023.01   华东理工大学,化工学院,特聘研究员

2019.042021.06   德国马格德堡大学,过程系统工程学院,研究员

2017.06–2019.04   德国马普学会复杂技术系统动力学研究所,过程系统工程研究组,博士后

2011.09–2017.05   华东理工大学,化工学院化学工程,博士

2007.09–2011.06   山东大学,化学与化工学院,化学工程与工艺,学士

研究方向

聚焦介质强化过程与产品创新,开展难分离体系、受限反应体系、电化学体系、高端材料制备体系的应用基础研究,研究兴趣包括:

1.介质分子/体系理性设计

2.机理与数据融合驱动建模

3.化工数据库智能构建与软件平台开发

欢迎对机器学习建模介质筛选设计、化工过程强化等相关模拟与实验方向感兴趣的本科生、研究生、博士生、博士联系加入团队!



承担项目

国家海外高层次青年人才项目,2022-2024,主持

国家重点研发计划项目课题,2024-2029,主持

国家自然科学基金面上基金,2026-2029,主持

国家自然科学基金青年科学基金,2023-2025,主持

上海市海外高层次人才项目,2021-2024,主持

上海市教委AI赋能专项项目,2025-2026,主持



学术任职

中国系统工程学会过程系统工程专委会  委员

中国化工学会硅能源与化工专业委员会  委员


个人荣誉

 2025  全球华人化工学者学会“未来化工学者”

 2024  上海高校“双带头人”教师党支部书记“强国行”专项行动团队(负责人)

 2024  全国首届化工行业人工智能应用创新大赛总决赛二等奖

 2023  华东理工大学“青年五四奖章”个人

 2023  华东理工大学-东岳药业研究生奖教金特等奖

 2022  华东理工大学优秀班导师

 2021  国家级高层次青年人才

 2021  上海市海外高层次人才


代表性学术成果

至今在Chem. Rev.Angew. Chem. Int. Ed.AIChE J.Digit. Discov.等化学、化工及人工智能交叉领域主流学术期刊发表论文90余篇,被引3780余次,H-index35;参编离子液体百科全书“Encyclopedia of Ionic Liquids”Wiley 专著“Applied AI Techniques in the Process Industry”;建立溶剂性质智能预测平台(ai4solvents.com)。近五年代表性论文如下:

1.Song Z#,*, Chen JH#, Cheng J, Chen GZ, Qi ZW*. Computer-aided molecular design of ionic liquids as advanced process media: A review from fundamentals to applications. Chemical Reviews, 2024, 124, 248-317.

2.Liu XM, Chen JH, Qiu YX, Xie KC, Cheng J, YouXZ, Chen GZ, Song Z*, Qi, ZW*. Machine learning boosted eutectic solvent design for CO2 capture with experimental validation. AIChE Journal, 2025, 71, e18631.

3.Xie KC, Chen JH, Cheng J, Wang RZ, Cheng HY, Qi ZW*, Zhu KK, Song Z*. Enhancing aromatics extraction by double salt ionic liquids: Rational screening‐validation and mechanistic insights. AIChE Journal, 2024, 70, e18301.

4.Chen GZ, Song Z*, Qi ZW*, Sundmacher K. A scalable and integrated machine learning framework for molecular properties prediction. AIChE Journal, 2023, 69, e18185.

5.Chen GZ, Song Z*, Qi Z*, Sundmacher K. Neural recommender system for the activity coefficient prediction and UNIFAC model extension of ionic liquid–solute systems. AIChE Journal, 2021, 67, e17171.

6.Song Z, Zhou T, Qi ZW, Sundmacher K. Extending the UNIFAC model for ionic liquid–solute systems by combining experimental and computational databases. AIChE Journal, 2020, 66, e16821.

7.Xia WC, Xie KC, Gao S, Song Z*, Chen L*, Li CZ*. 2025. Multidentate chelating ligands enable high-performance zinc-bromine flow batteries. Angewandte Chemie International Edition, 2025, 64, e202418669.

8.Fang Y, Fan Y, Xie KC, Ge WX, Zhu YH, Qi ZW, Song Z*, Jiang HL*, Li CZ*. Boosting hydrogen peroxide electrosynthesis via modulating the interfacial hydrogenbond environment. Angewandte Chemie International Edition, 2023, 62, e202304413.

9.Qin H, Pang MT, Cheng J, Wang JW, Song Z*. Rational design of hydrophobic type  deep eutectic solvents as efficient CO2 absorbents. Chemical Engineering Science, 2025, 315, 121904.

10.Qiu YX, Chen JH, Xie KC, Gu RF, Qi ZW, Song Z*. Graph transformer based transfer learning for aqueous pKa prediction of organic small molecules. Chemical Engineering Science, 2024, 300, 120559.

11.Cao PL, Chen JH, Chen GZ, Qi ZW, Song Z*. A critical methodological revisit on group-contribution based property prediction of ionic liquids with machine learning. Chemical Engineering Science, 2024, 298, 20395.

12.Cheng J, Xie K, Guo P, Qin H, Deng L, Qi Z*, Song Z*. Capturing CO2 by ionic liquids and deep eutectic solvents: A comparative study based on multi-level absorbent screening. Chemical Engineering Science, 2023, 281, 119133.

13.Qin H, Xie KC, Li LM, Cheng J, Song Z*. Enhancing R410A blend separation by using ionic liquids: From UNIFAC model extension, solvent design to molecular dynamics simulation. Chemical Engineering Science, 2023, 274, 118709.

14.Qiu YX, Song Z*, Chen GZ, Chen WY, Chen L, Zhu KK*, Qi ZW, Duan XZ*, Chen D. Large chemical language models for property prediction and high-throughput screening of ionic liquids. Digital Discovery, 2025, 4, 1505.

15.Chen GZ, Song Z*, Qi ZW*, Sundmacher K. Generalizing property prediction of ionic liquids from limited labeled data: A one-stop framework empowered by transfer learning. Digital Discovery, 2023, 2, 591-601.